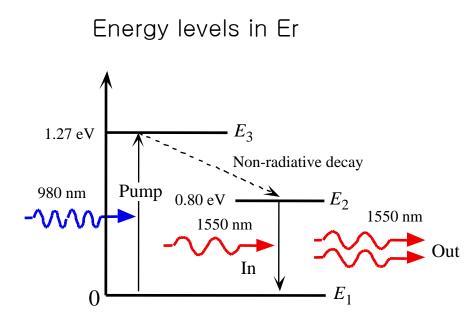


Which process is useful for optical amplifier?

How can we make stimulated emission dominant over absorption?


Pump carriers into N_2 so that $N_2 > N_1$

Optical Pumping and Electrical Pumping

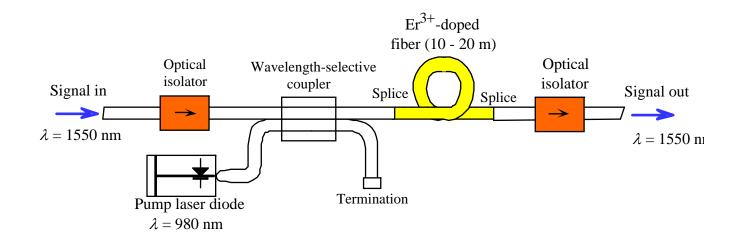
Optical Pumping: Consider Er

-Pump light is absorbed at E₃ generating carriers

- Carriers at E₃ rapidly transfer to E₂
 → N₂ builds up
- When N₂>N₁ (population inversion), stimulated emission > absorption for 1550nm light

Er can be easily added to core of Silica fiber

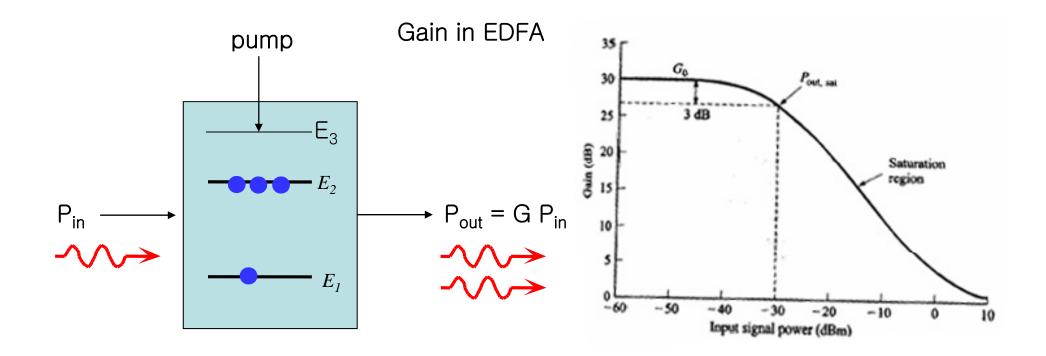
→ EDF (Er-Doped Fiber)



Optoelectronics (10/2)

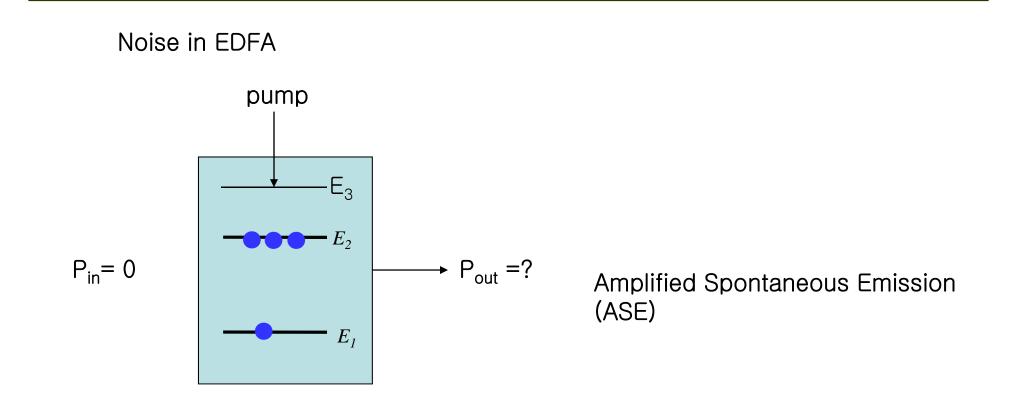
1	1/IA 1 H 1.008	2/11A	-	P	er	i 0	di	G	12	b	e		1 3/ IIIA	14/IVA	15/VA	16/VIA 1		8/VIIIA 2 He 4.003
2	3 Li 6.941	4 Be 9.012	1998 Dr. Michael Blaber										5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.30	3/1118	4/IVB	5/VB	6/VIB	7/VIB	8	VIII - 9	10	11/IB	12/IIB	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.05	18 Ar 39.95
4	19 K 39, 10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 П 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	106 Rf	¹⁰⁷ Bh	108 Hn	109 Mt	110 Uun	111 Uuu							
\bullet s $\rightarrow \bullet$ d p																		
Lanthanides				57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	6. Tm 1.8.9	70 Yb 173.0	71 Lu 175.0
Actinides				89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1

f


EDFA: Er-doped Fiber Amplifier

Compensates fiber loss for long distance optical fiber communication

Optoelectronics (10/2)



Gain saturation due to limited carriers at E₂

Optoelectronics (10/2)

Other materials where optical pumping is possible: Optical gain materials

- Crystals doped with impurities: Ruby doped with Cr (Al₂O₃:Cr³⁺)
- Gases: Ar, N, mixture of He and Ne
- Semiconductors

